THE ASIAN SCHOOL, DEHRADUN

CLASS 12 SUBJECT Mathematics
CHAPTER-1 Relation and Function MM-30

Q1.	On the set $A=\{1,2,3\}$, check whether the relation $R=\{(1,1),(2,3)](3,1)\}$ is reflexive, symmetric and transitive.	1
Q2.	Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=2 x+3, g(x)=x^{2}+5$.	1
Q3.	Let $\mathrm{f}=\{(3,1)](9,3),(12,4)\}$ and $\mathrm{g}=\{(1,3)](3,3),(4,9),(5,9)\}$ find fog and gof.	1
Q4.	Let * be a binary operation on the set I of integers, defined by a b $=2 \mathrm{a}+\mathrm{b}-3$. Find 3* 4 .	1
Q5.	Examine whether the binary operation * on R defined by a * $\mathrm{b}=a \mathrm{~b}+1$ is associative or not.	2
Q6.	If $f(\mathrm{x})=\frac{4 x+3}{6 x-4}, \mathrm{X} \neq \frac{2}{3}$, show that fof $(\mathrm{x})=\mathrm{x}$.	2
Q7.	If $R=\{x, y): x+2 y=8\}$ is a relation on N, then write the range of R.	2
Q8.	Show that the relation R on the set $A=\{1,2,3,4,5\}$, given by $R=\{(a, b)$: la bl is even $\}$ in an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ are related to each other but no element of $\{1,3,5\}$ are related to any element of $\{2,4\}$.	4
Q9.	Show that $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $F(n)\left\{\begin{array}{l}f \frac{n+1}{2}, \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2}, \text { if } \mathrm{n} \text { is even is many one onto function. }\end{array}\right.$	4
Q10.	Prove that the intersection of two equivalence relations on a set is an equivalence relation.	6
Q11.	Let X be a non empty set and let * be a binary operation on $P(x)$ (the power set of X) defind by A * B $=A \cup B \vee A, B, \in P(X)$. Prove that * is both commutative and asociative on $P(x)$ find the identity element w.rt. * on $p(x)$. Also show that $\emptyset \in p(x)$ is the only invertible element of PIX)	6

THE ASIAN SCHOOL, DEHRADUN

CLASS 12 SUBJECT Mathematics CHAPTER- 2Inverse Trigonometric Functions MM-30

Q1.	Evaluate $\tan ^{-1}\left\{2 \cos \left(2, \sin ^{-1} 1 / 2\right)\right\}$	1
Q2.	Find the principal value of $\sin \frac{1}{2}-2 \sin ^{-} \frac{1}{\sqrt{2}}$	1
Q3.	Evaluate $\tan ^{-1} \sqrt{3}-\sec (-2)+\operatorname{cosec}^{-1} \quad \frac{2}{\sqrt{3}}$	1
Q4.	Evaluate : $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$	1
Q5.	Simplify : $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), \quad-\frac{\pi}{4}<x<\frac{\pi}{4}$	2
Q6.		2
Q7.	Prove that $\tan ^{-1}\left\{\frac{\sqrt{1+\cos x}}{\sqrt{1+\cos x}+} \frac{\sqrt{1-\cos x}}{\sqrt{1-\cos x}}\right\}=\frac{\pi}{4} \quad-\frac{x}{2}$	2
Q8.	Prove that $\left.\cos \left[\tan ^{-1}\right\} \sin \left(\cos ^{-1}\right)\right] \sqrt{\frac{x^{2}+1}{x^{2}+2}}$	4
Q9.	Prove that $\tan ^{-1} \frac{1}{5}+\tan ^{-1}+\tan \frac{1}{7}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$	4
Q10.	Prove that i) $\quad \cos \left(\frac{a b+1}{a-b}\right)+\cos ^{-1}\left(\frac{b c+1}{b-c}\right)+\cos ^{-1}\left(\frac{c a+1}{c-a}\right)=\pi$ ii) If $\cos ^{-1} \frac{y}{a}+\cos ^{-1} \frac{y}{b}=\alpha$, prove that $\frac{x^{2}}{a^{2}}-\frac{2 x y}{a b} \cos \alpha+\frac{y^{2}}{b^{2}}=\sin ^{2} \alpha$	6
Q11.	i) Solve $\tan ^{-1}\left(\frac{x-1}{x-2}+\tan \left(\frac{x+1}{x+2}\right) \quad=\frac{\pi}{4}\right.$ ii) Solve $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \cos x)$	6

1. Find the inverse of $\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$ by using elementary row transformations.

6
2. Find x if $\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=0$
3. In a election, a firm promoted his candidate in 3 ways; telephone, house visits and letters. The cost per contact is given in Matrix A \& the no. of contacts of each type made in two cities $x \& y$ is given in matrix B. Find the total amount spent by firm.

$$
\mathrm{A}=\left[\begin{array}{l}
40 \\
100 \\
50
\end{array}\right] \begin{gathered}
\text { Telephone } \\
\text { House visit } \\
\text { Letter }
\end{gathered} \quad \mathrm{B}=\left[\begin{array}{ccc}
1000 & 500 & 5000 \\
3000 & 1000 & 1000
\end{array}\right] \frac{x}{y}
$$

4. Express the given matrix as a sum of a symmetric and a kew, symmetric matrix. If

$$
A=\left(\begin{array}{lll}
3 & 3 & -1 \\
-2 & -2 & 1 \\
-4 & -5 & 2
\end{array}\right]
$$

5. If $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$ show that $A^{2}-5 A+7 I=0$. Hence, find A^{-1}.
6. A trust caring for handicapped children gets Rs 30,000 from its donors. The trust spends half of the funds received for medical and educational care of the children and for that it charges 2% of spent amount from them and deposits the balance amount in a private bank to get the money multiplied so that in future the trust functions regularly. What percent of interest the trust should get from the bank so that it receives an interest of Rs. 1800? Using matrix method finds the rate of interest. Do you think the people should donate to such trusts?
7. If the matrix $A=\left[\begin{array}{lll}a & b & c\end{array}\right]$, evaluate $A A^{\prime}$ where A, , is the transpose of A.
8. Construct a 2×2 matrix $A=\left[a_{i j}\right]$ whose elements are given by $\mathrm{a}_{\mathrm{ij}}=(\mathbf{i}-\mathbf{j})^{\mathbf{3}}$
9. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|=(a+b+C)^{3}
$$

2. Proving that $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+C\end{array}\right|=b c+c a+a b+a b c$
3. A school wants to award its students for Honesty, Regularity \& Hard work with a total cash award of Rs. 6000. Three times the award money for hard work added to that given for honesty amounts to Rs.11000. The award money for honesty and hard work together is double the one given for regularity. Find the award money for each value, using matrix method suggest one more value which the school must include for awards.
4. Evaluate the determinant:

$$
\left|\begin{array}{cc}
1+i & 1-i \\
1-i & 1+i
\end{array}\right|
$$

5. Using properties of determinants prove

$$
\left|\begin{array}{lll}
a^{2} & c b & a c+c^{2} \tag{4}\\
a^{2}+a b & b^{2} & a c \\
a b & b^{2}+b c & c^{2}
\end{array}\right|=4 a^{2} b^{2} c^{2}
$$

6. If area of triangle is 35 unit 2 with vertices $(2,-6)(5,4)$ and $(K, 4)$ then find K.
7. Solve the following system of equations by matrix method

$$
\begin{aligned}
& 3 x-2 y+3 z=8 \\
& 2 x+y-z=1 \\
& 4 x-3 y+2 z=4
\end{aligned}
$$

8. If x, y, z are different and

$$
\left|\begin{array}{lll}
x & x^{2} & 1+x^{3} \\
y & y^{2} & 1+y^{3} \\
z & z^{2} & 1+z^{3}
\end{array}\right|=0
$$

Q1.	If $f(x)=\log _{e}\left(\log _{e} x\right)$, find $f^{1}(e)$	1
Q2.	If $\mathrm{f}(\mathrm{x})=\mathrm{x}+1$, find $\frac{d}{d x}$ (fof) (x)	1
Q3.	If $\mathrm{f}^{1}(1)=2$ and $\mathrm{y}=\mathrm{f}\left(\log _{\mathrm{e}} \mathrm{x}\right)$, find $\frac{d y}{d x}$ at $\mathrm{x}=\mathrm{e}$	1
Q4.	If $\mathrm{y}=\mathrm{x} \mid \mathrm{xl}$, find $\frac{d y}{d x}$ for $\mathrm{x}<0$.	1
Q5.	if $y=x^{\mathrm{x}}$, find $\frac{d y}{d x}$ at $\mathrm{x}=\mathrm{e}$	2
Q6.	If $\mathrm{y}=\tan -1 \sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}$, find $\mathrm{dy} / \mathrm{dx}$.	2
Q7.	If $\mathrm{x}=\mathrm{a}(\theta+\sin \theta), \mathrm{y}=\mathrm{a}(1-\cos \theta)$ find $\mathrm{dy} / \mathrm{dx}$	2
Q8.	If $\mathrm{y}=\sin ^{-1} \mathrm{x}$, prove that: $\left(1-\mathrm{x}^{2}\right) \frac{d^{2} y}{d x^{2}}-\mathrm{x} . \frac{d y}{d x}=0$.	4
Q9.	If $\mathrm{y}=(\mathrm{x} \cos \mathrm{x})^{\mathrm{x}}+(\mathrm{x} \sin \mathrm{x})^{1 / x}$, find $\frac{d y}{d x}$	4
Q10.	If $\sqrt{1-x^{6}}+\sqrt{1-y^{6}}=\mathrm{a}\left(\mathrm{x}^{3}-\mathrm{y}^{3}\right)$, Prove that $\mathrm{dy} / \mathrm{dx}=\frac{x^{2}}{y^{2}} \sqrt{\frac{1-y^{6}}{1-x^{6}}}$	6
Q11.		6

CLASS 12 SUBJECT Mathematics
CHAPTER- 6 Applications of Derivatives
MM-30

Q1.	An edge of a cube is increasing at the rate of $10 \mathrm{~cm} / \mathrm{sec}$. How fast is the volume of the cube increasing when the edge is 5 cm long?	1
Q2.	Use differentiates to approximate $\sqrt{25.2}$	1
Q3.	Find the slope of tangent to the curve $x^{2}+3 y+y^{2}=5$ at $(1,1)$	1
Q4.	Find the max. and min. values of $f(x)=-\|x-1\|+5$ without derivative.	1
Q5.	A particle moves along the curve $6 y=x^{3}+2$. Find the points on the curve at which y-coordinate is changing 8 times as fast as the x-co-ordinate.	2
Q6.	Verify Rolle's theorem for the function $f(x)=x^{2}-5 x+6$ at $[2,3]$	2
Q7.	Find the equation of tangent to the cure $\mathrm{y}=5 \mathrm{x}^{2}+6 \mathrm{x}+7$ at (1/2,35/4)	2
Q8.	Find the equation (s) of normal (s) to the curve $3 x^{2}-y^{2}=8$ which is (are) parallel to the line $x+3 y=4$.	4
Q9.	Find the intervals in which $f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi$ is increasing or decreasing.	4
Q10.	Show that of all the rectangles inscribed in a given circle, the square has the maximum area.	6
Q11.	If the sum of the lengths of the hypotenuse and a side of a right angles trioangle is given, show that the area of the triangle is maximum when the angle between them is $\pi / 3$.	6

Class XII - Chapter 7 (Integration)
 Mathematics Test

Q1. a) $\int \frac{x^{2}+1}{x^{4}+1} d x$
b) $\int \frac{d x}{1+3 \operatorname{Sin}^{2} x+8 \operatorname{Cos}^{2} x}$
$4+4=8$

Q2. Evaluate $\int \frac{d x}{\operatorname{Sin} x-\operatorname{Sin} 2 x}$
Q3. Evaluate $\int \frac{\sqrt{1+\operatorname{Sin} x}}{\sqrt{1+\operatorname{Cos} x}} e^{-\frac{x}{2}} d x$
2

Q4. Evaluate $\int_{0}^{\frac{\pi}{2}}(\sqrt{\tan x}+\sqrt{\cot x}) d x$
4
Q5. Evaluate $\int_{0}^{\pi} \frac{x \tan x}{(\operatorname{Sec} x+\tan x)} d x=\pi\left(\frac{\pi}{2}-1\right)$
4
Q6. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$
Q7. $\int \frac{d x}{x^{3}\left(x^{5}+1\right)^{3 / 5}}$
2
Q8. $\int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} d x$ 4

Q9. $\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} d x$
Q10. $\int(x-3) \sqrt{x^{2}+3 x-18} d x$
6
Q11. Evaluate: $\int_{2}^{5}|x-2|+|x-3|+|x-5| d x$
4

Q12. Evaluate: $\int_{1}^{4}\left(x^{2}-x\right) d x$ as limit of sums
4

Q13. Find the value of $\int_{-\pi / 2}^{\pi / 2} \sin ^{7} x d x$
2

Class XII - Chapter 8 (Application of Integrals) Mathematics Test

Q1. Find the area of the region bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$
Q2. Using Integration, find the area of region bounded by $x^{2}+y^{2}=16$ and $y^{2}=6 x$.
Q3. Using the method of integration. Find the area of the region bounded by the lines
$3 x-2 y+1=0,2 x+3 y-21=0$ and $x-5 y+9=0$
Q4. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of the square bounded by $x=0$, $x=4, y=4$ and $y=0$ into three equal parts.
Q5. Sketch the graph of $y=|x+3|$ and evaluate the area under the curve $y=|x+3|$ above x-axis and between $x=-6$ to $x=0$

Q6. Using integration find the area of the following region:

$$
\left\{(x, y):|x+2| \leq y \leq \sqrt{20-x^{2}}\right\}
$$

Q1.	Determine the order and degree of the differential equation: $x y \frac{d^{2} y}{d x^{2}}+x\left(\frac{d y}{d x}\right)^{3-} \mathrm{y} \cdot \frac{d y}{d x}=0 .$	1
Q2.	Show that $\mathrm{y}=\mathrm{x}$. $\sin \mathrm{x}$ is a solution of the equation: $\mathrm{xy}=\mathrm{y}+\mathrm{x} \sqrt{x^{2}-y^{2}}$.	1
Q3.	Form the differential equation corresponding to the curve $\frac{x}{a}+\frac{y}{y}=1$	1
Q4.	Find the general solution of the different equation $\mathrm{dy} / \mathrm{dx}=\frac{1+y^{2}}{1+x^{2}}$	1
Q5.	Find the equation of the curve passing through the paint $(1,1)$ whose differential equation is x. $d y=\left(2 x^{2}+1\right) d x$.	2
Q6.	Find a particular solution of the differential equation: $\left(\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right) \frac{d y}{d x}=2 \mathrm{x}^{2}+\mathrm{x}, \mathrm{y}=1$ when $\mathrm{x}=0$.	2
Q7.	Find the particular solution of the differential equation $\log \left(\frac{d y}{d x}\right)=3 x+4 y$ given that $y=0$ when $x=0$.	2
Q8.	Show that the differential equation ($\mathrm{x}-\mathrm{y}$) $\frac{d y}{d x}=\mathrm{x}+2 \mathrm{y}$ is homogeneous and solve it.	4
Q9.	Show that the general solution of the different equation: $\left(\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right) \frac{d y}{d x}=1$.	4
Q10.	Show t hat the general solution of the different equation $\frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+1}=0$ is given by $(x+y+1)$ $=A(1-x-y-2 x y)$.	6
Q11.	The volume of a spherical ballon being inflated changes at a constan state. If initially its radius is 3 units and after 3 sec . It is 6 units. Find the radius of the ballon after t seconds.	6

Class XII - Chapter 10 (Vectors)
 Mathematics Test

Q1. Find λ, if $(2 \hat{\imath}+6 \hat{\jmath}-14 \hat{k}) \times(\hat{\imath}-\lambda \hat{\jmath}+7 \hat{k})=\overrightarrow{0}$
Q2. Find λ, if the projector of $\vec{a}=\lambda \hat{\imath}+\hat{\jmath}+4 \hat{k}$ on $\vec{b}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$ is 4 units.
Q3. Show that the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar if $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are coplanar. 2
Q4. Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where $\vec{a}=3 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ and $\vec{b}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k}$.
Q5. If $\vec{x}=3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}$ and $\vec{y}=2 \hat{\imath}+\hat{\jmath}-4 \hat{k}$ then express $\vec{y}=\vec{a}+\vec{b}$, where \vec{a} is parallel to \vec{x} and \vec{b} is \perp to \vec{x}.
Q6. Let $\vec{a}=\hat{\imath}+4 \hat{\jmath}+2 \hat{k}$ and $\vec{b}=3 \hat{\imath}-2 \hat{\jmath}+7 \hat{k} \quad \vec{c}=2 \hat{\imath}-\hat{\jmath}+4 \hat{k}$. Find a vector \vec{p} which is \perp to both \vec{a} and \vec{b} and $\vec{p} . \vec{c}=18$
Q7. The scaler product of the vector $\hat{\imath}+\hat{\jmath}+\hat{k}$ with the unit vector along the sum of vectors $2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$ and $\lambda \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ is 1 . Find λ.
Q8. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then find the angle between \vec{a} and \vec{b}.
Q9. The scalar product of the vector $\vec{a}=2 \hat{\imath}+\hat{\jmath}+\hat{k}$ with a unit vector along the sum of vectors $\vec{b}=2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$ and $\vec{c}=\lambda \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ in equal to one. Find value of λ, and hence find unit vector along $\vec{b}+\vec{c}$.

Q10.find the value of λ so that the vectors $\hat{\imath}+\hat{\jmath}+\hat{k}, 2 \hat{\imath}+3 \hat{\jmath}-\hat{k}$ and $-\hat{\imath}+\lambda \hat{\jmath}+2 \hat{k}$ are coplanar.
Q11. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ then show that $(\vec{a}-\vec{d})$ is parallel to $(\vec{b}-\vec{c})$.
Q12. If \vec{a}, \vec{b} are unit vectors such that vector $\vec{a}+3 \vec{b}$ is \perp to $7 \vec{a}-5 \vec{b}$, then find the angle between \vec{a} and \vec{b}.

CLASS 12 SUBJECT Mathematics CHAPTER-11 MM-30

Q1	If a line has direction ratios $2,-1,-2$, find its direction cosines.	1
Q2.	Find the vector equation of a line which passes through the point $2 \mathrm{i}-\mathrm{j}+4 \mathrm{k}$ and in the direction of I +J - 2 k .	1
Q3.	Find the angle between the planest. ($2 \mathrm{i}-\mathrm{j}+\mathrm{k})=6$ and $\mathrm{r} .(\mathrm{l}+\mathrm{j}+2 \mathrm{k})=5$	1
Q4.	Find the vector equation of a plane at a distance of 5 units from the origin and has I as the unit vector normal to it.	1
Q5.	Find the vector equation of the line passing through the points ($-1,0,2$) and ($3,4,6$)	2
Q6.	Find the value of p so that the lines $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are the right angles.	2
Q7.	Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z$ $-2=0$ and the point $(2,2,1)$	2
Q8.	Find the equation of the line passing through the point ($1,2,-4$) and perpendicular to the lines $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$	4
Q9.	Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $r=(2 i-j+2 k)$ $+\kappa(3 i+4 j+2 k)$ and the plane $-(i-j+k)=5$	4
Q10	Find the length of perpendicular from the point (1,2,3) to the line $\frac{x-6}{3}=\frac{y-7}{5}=\frac{z-7}{2}$.	6
Q11.	Prove that the lines $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-6}{7}$ are coplaner. Also, find the plane containing these two lines.	6

Q1.	A cooperative society of farmers has 50 hectare of land to grow two crops X and Y. The profit from crops X and Y per hectare are estimated as Rs 10,500 and Rs 9,000 respectively. To control weeds, a liquid herbicide has to be used for crops X and Y at rates of 20 litrer and 10 litres per hectare. Further, no more than 800 litre of herbicide should be used in order to protect fish and wild life using a pond which collects drainage from this land. How much land should be allocated to each crop so as to maximize the total profit at the society?	6
Q2.	A manufacturing company makes two models A and B of a product. Each piece of model a requires a labour hours for fabricating and 1 labour for finishing. Each piece of model B requires 12 labour hours for fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum labour hours available are 180 and 30 respectively. The company makes a profit of Rs 8000 on each piece of model A and Rs 12000 on each prices of model B. How many prices of model A and M odel B should be manufactured per week to realize a maximum profit?	6
Q3.	A dietician wishes to mix two types of foods in such a way that vitamin contents of the mixture contain at-least B units of vitamin A and 10 units of vitamin C. food I contains 2 units/ Kg of vitamin	6
Q4.	A and 1 unit/jkg of vitamin C. Food II contains 1 unit/kg of vitamin A and 2 unit/kg of vitamin C. It costs Rs.50 /kg to purchase food I and Rs70/kg to purchase food II. Formulate this problem as a LPP to minimize the cost and find the minimum cost.	A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit of Rs. 17.50 per package on nuts and Rs. 7.00 per package on bolts. How many package of each should be produced each day so as to maximize his profit, if he operates his machines for at the most 12 hours a day?
Q5.	An aeroplane can carry a maximum of 200 passengers . A profit of Rs. 1000 is made on each executive class ticket and a profit of Rs. 600 is made on each economy class ticket. The airline reserves at-least 20 seats for executive class. However, at-least 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximize the profit? What is the maximum profit?	6

Q1.	If $2 P(A)=P(B)=\frac{5}{13}$ and $P(A / B)=\frac{2}{5}$, find $P(A U B)$	1
Q2.	Let E and F be evenis. With $P(E)=3 / 5, P(F)=3 / 10$, and $P(E N F)=1 / 5$. Are E and F independent.	1
Q3.	If $P(A)=1 / 2, P / A V B)=3 / 5$ and $P(B)=p$. Find p if they are mutually exclusive.	1
Q4.	If $P(A)=1 / 4 P(b)=1 / 2$ and $P(A N B)=1 / 8$, find $P($ not A and not $B)$	1
Q5.	Probability of solving a problem by A and B are $1 / 2$ and $1 / 3$ respectively. If both try to solve the problem independently, find the prob that the problem is solved.	2
Q6.	Consider an experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the probability of the event the coin shows a tail , given that at least one die shows a 3.	2
Q7.	A pair of dice is thrown 4 times If getting a doublet is considered a success, find the probability of two successes.	2
Q8.	Suppose that 90% of people are right handed. What is the prob.that at most 6 of a sample of 10 people are right handed?	4
Q9.	Two cards are drawn without replacement from a pack of 52 cards. Find the mean, variance and standard deviation of the number of kings.	4
Q10.	A card from a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn and are found to be both diamonds. Find the prob of the lost card being diamond.	6
Q11.	Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. One balls is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red. Find the prob that the transferred ball is black.	6

